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e FLAMBE overview: A little context

e Emissions estimation with active fires:
— The worst
— Except for every other method

 The Major Challenges for emissions estimates from
active fire data

* Big Unknowns: potential for new discovery
e How can field missions help?
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* Navy objective: accurate forecasts of visibility-
reducing events
— Near Real Time
—  Fully Automated
— Maintainable (Minimum Moving Parts)
* Navy Aerosol Analysis and Prediction System
(NAAPS)
—  First operational global aerosol forecast model

— 144-hour forecasts 4x/day of dust, smoke, sea salt,
anthropogenic and biogenic fine mode aerosols

e  FLAMBE provides smoke for NAAPS
— Simple+transparent > complex+opaque
— Traceability to field measurements
— NRT data only

— Consistent estimates for atmospheric modeling at
scales 10-200km
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FLAMBE in Navy Operations:

Pe rsonne I 24/7/365 since 2007

FLAMBE —NAAPS hourly JUN—-2017

 The originators (1999):
— Jeffrey Reid at SPAWAR/NRL
— Elaine Prins at UW-CIMSS

(24=complete)

0601 0803 0605 0607 0609 os11

— Douglas Westphal at NRL (developer of NAAPS) oogeme R
* The satellite product teams ; % _ :
— Chris Schmidt and Jay Hoffman, UW-CIMSS o01 oo 0w o7 ows  Ge
— Louis Giglio, Ivan Csiszar, Wilfrid Schroeder at o FLAMBE NARPS Smoke (g)JUN-2017
UMD/NASA/NOAA g
* Fire science and observability: Edward Hyer (NRL), Jun oo o owsmer wes
Wang (U.lowa), Jukka Miettinen(NUS), David 8 FLAVBE-NAWPS Smoke JUN-2017
Peterson(NRL), many more PN
e The maintainers (NRL): Edward Hyer, Peng Xian, Cindy PwE__— .~~~

Curtis (retired) e
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Requirement: Provide rapid smoke source function for aerosol forecasting at broad scales

Input

 GOES-E/GOES-W

Location: 4km+
Fire size: Dozier
Emissions applied over 60min

* MODIS

Terra + Aqua
Location: 1km+
Fire size: fixed 0.85ha

Emissions scaled over 24 hours using
empirical diurnal cycle by ecosystem

e Land Cover/Ecosystem

GLCC(AVHRR)

Output
Scope: Global

Temporal: Hourly

— Hourly FLAMBE (T to T+1) based on:
e 1h GOES (T to T+1)
« 24h MODIS (T-23 to T+1)

— Persistence forecast for NRT use
Spatial: resolution of satellite inputs (1-4km)
— Identical emissions for global and mesoscale
PM2.5
— Based on Reid et al. (ACP, 2005)
Total carbon release
— For speciation (e.g. Akagi et al. ACP 2011)
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o N One simple concept
' Endless permutations
In implementation!

- = Emissions
-+ Fuels & Conditions Data

| Fire Location and Timing Data (+Energy)
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Option 1: Active Fire

Pro:
—  Suitable for NRT
—  Exact timing
—  Principle limitations easy to quantify
e Pixel size drives detection efficiency
e Obscuration by opaque clouds
—  FRP s closer to physical model of combustion

—  Miiss lots of fires, lots of places, lots of time

e Extrapolation mandatory
—  Stochastic factor: fire location within pixel (PSF)
—  Systematic factor: pixel size variation

° Between sensors

¢ Forasingle sensor

Both satellite methods have

drawbacks. For NRT, active fires

are the only suitable option.

Option 2: Burned area

. Pro:
—  Globally consistent methods/algorithms
—  Potential to catch fire under cloud
—  Simple GIS integration

. Con:

—  Miss lots of fires
»  Efficiency varies by fire regime / ecosystem
properties

—  Not suitable for NRT
¢ (*) maybe with GOES-R?
—  End of season = end of detection
e Algorithm requires post-fire image
e Tropics: rain
e Temperate/boreal: snow
Option 3: “Good Data” (ground-based, aerial)
—  Pro: detailed, accurate
—  Con: Inconsistent, Incomplete, Unavailable
e Especially timing!
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* Q:Do Terra and Aqua seem the same
patterns of fire activity?

* A: Yes, at sufficiently coarse scales 1
» Atright: correlation between MODIS-Terra 2| 052

and Aqua FRP (MOD14) as a function of %
. . . o
spatial (X-axis) and temporal(Y-axis) scale >
— At the scales of climate (upper right), these g 10 0.65
sensors show the same patterns 2
— At scales relevant for AQ forecasting, o 90| 074 068
sampling differences manifest themselves: F oo IR 074 o6
Terra and Aqua look at different fires : ' '
e What about two sensors looking at the 180| 0.74 071 067 0.54
same fIrES? 365| 0.73 0.71 0.68 0.57

10.00 5.00 2.00 1.00 050 0.25 0.10
Space integration (degrees)
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Q: Do two geostationary sensors (GOES-12 and

Meteosat-9 SEVIRI) see the same patterns? 6h

* A: Yes, at sufficiently coarse scales

*  Atright: correlation between GOES-12 and
Meteosat-9 SEVIRI FRP (WF_ABBA) as a function of 2

spatial (X-axis) and temporal(Y-axis) scale
— At the scales of climate (upper right), these sensors

show very similar patterns

— At scales relevant for AQ forecasting, scale-based
uncertainty manifests itself: these sensors are
looking at the same fires and getting different

answers

10

30

Time integration (days)

90

. No correlation means no basis to scale FRP
e Three related factors contribute to this 180

degradation:
— Zero-value grids;
— Truncation of FRP distribution
— Noisy single-pixel FRP retrievals

R® GOES-12 vs Meteosat-9 SEVIRI 2008-2012

10.00 5.00 2.00 1.00 050 0.25 0.10
Space integration (degrees)
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Schroeder et al. RSE 2008, Figure 6

MOD14
——WF-ABBA
-«==+ WF-ABBA W/O Temp Filter

Csiszar et al. TGRS 2006,
Figure 3

50% detection

this bin and
above (MODIS)
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Hot Pixels (30m ASTER)

“Most fires” does not
necessarily mean
“most fire activity”

In some ecosystems,
over some periods,
total emissions are
dominated by the
largest fires

— This is scale-
dependent
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Peterson et al., RSE 2013

Active Fire Dete

The big box is the MODIS pixel
* mid-swath, ~3km?
The red area is the fire front from aircraft
e  AMS-Wildfire on NASA Ikhana, ~20m resolution
The fire front is 2% of the MODIS pixel

This is a HUGE fire
e SoCal Santa Ana-driven fires 2007
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Peterson et al., RSE 2013

SoCal Santa Ana-driven fires 2007
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10:00 AM (Landsat ETM+) ~ W°10:00 (Landsat ETM+)’
10:30 AM (AM-1 ASTER) W '10:30 (ASTER)"
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Nominal overpass time #
center of scan

MODIS
Detection

Scan Angle and Overpass
Time Interact to Determine
Detection Efficiency

20 40 6
---High-resolution fire pixels- -

Flre fronts have significant movement
a:cross Iandseape in 30 minute:

Local Solor Time

-40 -20 0 20 40 60
View Zenith Angle

Polar orb/ter repeats are
not frequent enough to

* Fireis a highly dynamic process
* 30 minutes is a long time! constrain mechanistic
e 3-9-3-9 hours (MODIS-Terra+Aqua) is basically forever spread models
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e Landsat image shows recent and
older clearings

e |sthe fire in the previously
cleared area? Or is the fire being
used to expand the clearing?

e Both random and systematic
errors are large

In many landscapes where
fires are important, satellite
data are not precise enough

to isolate fuel properties

Active Fires

QGOES (4 km)

+ MODIS-Aqua (1 km)
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S S Ichoku and Kaufman (TGRS 2005) show
o _ 0, 00
anades 6 Quebec: 29-30% large regional variation in smoke(Y-axis)

per FRE(X-axis)
0 VEOOC"D 40000 60000 5 00 50000’\100000 150000 200000 ¢ This Can be eXpIained by Sampling biaS Of
v Frest ool e 2002 " Congo regormfres 2002 FRE:
Y Sl Facs it Y s e  Fire duration vs. sampling
H * Fire size distribution
’ e If these sampling factors could be

5 0 e
o0 100000 200000 300000 0 50000 100000 150000 200000

P e e ) directly accounted for, FRE could be used

West Africa regional fires, 2002 Siberia regional fires , 2002

; W. Africa: 79-96% Siberia: 69-99% without geographic data

. 52t e Some proxy for fire regime
00 5‘00;0‘/ \'1100000 150000 200000 00 "@ 5’0000 . 100000 150000 propertles IS needed to

Fire radiative energy release rate (MJis) Fire radiative energy release rate (MJ/s) -
Fig. 2. Regional correlatiol bel rates of emission of smoke aerosols I, (kilograms per second) and the rates of release of fire radiative energy Ry eXt r a p O I ate S ate I I I te I I t I d ata

(meg J ules per second or meg ) f rom fires detected by MODIS on (dots and dotted lines) Terra and (circles and solid lines) Aqua throughout the designated
regiol 2002. Each data poin np esen e MODIS daytime overpass over the region. Vertical error bars represent the standard errors of Ry, .
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Bispectral retrievals (e.g. Dozier(1981)
method) use two IR channels to retrieve
two subpixel fire properties: size and
Temp.

Giglio and Schroeder (RSE, 2015) did a
rigorous theoretical analysis of
uncertainty in bispectral retrieval

The bad news: The good news: we
— Retrieving fire fraction within a factor of 2 :
requires +4Z above background in 11um channel know exaCtIy which
— This occurs in 7% of MODIS fire globally 7% those are!

— Assumptions of this study are optimistic: many
other sources of uncertainty ignored

0% 10% 20% 30% 40% =>50%
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1. Omission errors dominate, so don’t discard data

— Use all available sensors all the time

— Find a way to use both MODIS and GEO data: MODIS is more sensitive, but GEO
provides diurnal information very valuable for modeling plume transport

—  Grid boxes with zero fire detections are the limiting factor in scale
2. Scaling will be necessary: observations cannot ‘close the loop’ of fire energy

— FRP gives a physically meaningful number, but scaling/extrapolation in multiple
dimensions is required to get to emissions

3. Satellite overpasses are best treated as independent snapshots
—  Stochastic nature of fire detection dictates that observations are never “duplicates”

4. Extrapolating from detected fires to total fire activity is dependent on fire regime
—  Can’t escape from the need to characterize fuel type/condition
—  What are the best proxies (e.g. region, season, land cover)?
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From South American area data:

— 53% of MODIS NADIR (pixel dim <
1.25km along-scan) FRE is below the 1%
detection limit of Meteosat-9 SEVIRI

e 37% of total MODIS FRE
— 31% of MODIS NADIR FRE is below the

1% detection limit of MODIS EDGE (pixel
dim >2.5km along-scan)

e Shape of FRP distribution at low values
determined by detection efficiency

e Thereis no “reference standard” for this
distribution

— Thus, our extrapolations can only be as
good as MODIS at nadir

Bottom of FRP @

Fraction of LEFRP Fraction of LFRP

Fraction of ZEFRP

0 2.0410° 4.0410° 6.0+10° 8.0+10° 1.0+10* 1.2+10*

Single=pixel FRP (MW)
Cumulative Fire Radiative Power - South America

1, 50%

0 500 1000 1500 2000

Single=pixel FRP (MW)

Cumulative Flre Radiative Power - South America

X ;—x—-—x ODI

:u(n(n
O~
o.m

0 20 60 80 100

Slngle pixel FRP (MW)

What would this curve look

like at 20m resolution?
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. . 4 um BT (K)
e Combustion phase is supposed to 246 277 314 %6 403 457 518
drive smoke composition v [ Hot+ |
. . v 8f i -
» Combustion phase evolves over fire 5 | A -k
lifetime T of S ]
[ [ I
e Field results have not had good § a4 ‘
success at capturing this g | T :
. =z o} _
* Polivka et al. (TGRS, 2016) evaluated g " Cool Hot+dark ]
using visible signal to identify 0 - - - - :
. . . . 220 22.5 23.0 235 24.0 245 25.0
nighttime burning (modify IR 5 In((4 wm BT)?) (K
detection thresholds) £ 40 o) noose 1%
. . . = 300 ' 340
* Can a satellite retrieval yield 5 200 Jo20
information related to combustion 5 1 RV P
phase? g o W S B PP
2 %% MR MR X% 4R

910z S&9L “|e 18 BAII0d
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1. High-resolution observations of fire energetics
— Large and small fires
2. Combustion phase / efficiency observations of very large fires /
smoke plumes
3. Expectation rules for fires in mixed landscapes
—  How much in forest vs chaparral?
—  Fuel properties thresholds to determine where fire is not?
4. Additional information on nighttime burning
— Can deviation from climatology be well-predicted?

— What are the chemical/microphysical implications of smoke release at
night?
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*NRL FLAMBE Group N A=
b P IEINTS

*UNL and Ul Wang Groups

*Fire product teams: MODIS,
WF_ABBA (CIMSS)

THANK YOU!
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! o QGiglio & Csiszar, JGR 2010
— Nominal FRP = 63.7MW
— Black = calc. using nominal pixel area

* T s B ) — Red = calc. using realistic best-case pixel area
e — Fire at pixel edge has ~40% FRP of nominal
’ | » * Implication: “limit of detection” is a range

from FRP_. to 2.5*FRP ..

e VIIRS pixel aggregation scheme complicates
things further
— See Polivka et al., IEEE GRSL 2015




